Trivial factors for L-functions of symmetric products of Kloosterman sheaves
نویسندگان
چکیده
In this paper, we determine the trivial factors of L-functions of both finite and infinite symmetric products of Kloosterman sheaves. Let Fq be a finite field of characteristic p with q elements, let l be a prime number distinct from p, and let ψ : Fq → Q ∗ l be a nontrivial additive character. Fix an algebraic closure F of Fq. For any integer k, let Fqk be the extension of Fq in F with degree k. Let n ≥ 2 be a positive integer. If λ lies in Fqk , we define the (n− 1)-variable Kloosterman sum by Kln(Fqk , λ) = ∑
منابع مشابه
Functional Equations of L-functions for Symmetric Products of the Kloosterman Sheaf
We determine the (arithmetic) local monodromy at 0 and at ∞ of the Kloosterman sheaf using local Fourier transformations and Laumon’s stationary phase principle. We then calculate -factors for symmetric products of the Kloosterman sheaf. Using Laumon’s product formula, we get functional equations of L-functions for these symmetric products and prove a conjecture of Evans on signs of constants o...
متن کاملL-Functions for Symmetric Products of Kloosterman Sums
The classical Kloosterman sums give rise to a Galois representation of the function field unramfied outside 0 and ∞. We study the local monodromy of this representation at ∞ using l-adic method based on the work of Deligne and Katz. As an application, we determine the degrees and the bad factors of the L-functions of the symmetric products of the above representation. Our results generalize som...
متن کاملL-functions of Symmetric Products of the Kloosterman Sheaf over Z
The classical n-variable Kloosterman sums over the finite field Fp give rise to a lisse Ql-sheaf Kln+1 on Gm,Fp = P 1 Fp − {0,∞}, which we call the Kloosterman sheaf. Let Lp(Gm,Fp ,Sym Kln+1, s) be the L-function of the k-fold symmetric product of Kln+1. We construct an explicit virtual scheme X of finite type over Spec Z such that the p-Euler factor of the zeta function of X coincides with Lp(...
متن کاملHypergeometric 3f 2(1/4) Evaluations over Finite Fields and Hecke Eigenforms
Let H denote the hypergeometric 3F2 function over Fp whose three numerator parameters are quadratic characters and whose two denominator parameters are trivial characters. In 1992, Koike posed the problem of evaluating H at the argument 1/4. This problem was solved by Ono in 1998. Ten years later, Evans and Greene extended Ono’s result by evaluating an infinite family of 3F2(1/4) over Fq in ter...
متن کاملOn a functional equation for symmetric linear operators on $C^{*}$ algebras
Let $A$ be a $C^{*}$ algebra, $T: Arightarrow A$ be a linear map which satisfies the functional equation $T(x)T(y)=T^{2}(xy),;;T(x^{*})=T(x)^{*} $. We prove that under each of the following conditions, $T$ must be the trivial map $T(x)=lambda x$ for some $lambda in mathbb{R}$: i) $A$ is a simple $C^{*}$-algebra. ii) $A$ is unital with trivial center and has a faithful trace such ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Finite Fields and Their Applications
دوره 14 شماره
صفحات -
تاریخ انتشار 2008